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Introduction

Over the past decade, the scale and frequency of natural disasters have attracted broad attention. In the US,

natural disasters have taken the form of hurricanes and floods on the East and Southern coasts, and wildfires

on the West coast. In the fall of 2017, 2018, and 2019, wildfires swept across California, where the dry season

is hotter, longer, and drier than ever before. These wildfires displaced thousands of households, and produced

smoke that traveled hundreds of miles and impacted millions of people (Manjoo, 2019). Scientists estimate

that these conditions are not only the new norm, but will accelerate in the years to come (CAL FIRE, 2019).

In an effort to mitigate fire risk, Pacific Gas and Electric unrolled a statewide Public Safety Power Shutdown

(PSPS) program which shuts down electrical transformers during high winds. The cuts power to adjacent

areas, but eliminates the possibility of damaged electrical lines sparking fire. In October 2019 PG&E cut

power to hundreds of thousands of households for up to 5 days. Although the PSPS events are not a natural

disaster, we argue that they qualify as a major climate related. Studies have shown that an outage longer

than 24 hours imparts a substantial burden on households, and impedes access to basic necessities (Moreno

and Duncan, 2018). Due to their duration and scale, the PSPS events necessitate an analysis of their social,

spatial, and economic impact towards better informing policy solutions to mitigate the impact of future shut

down.

Our initial research question was: are the frequency and duration of the shutdowns related to income levels? In

particular, we were interested in whether the shutdowns disproportionately impacted low income households.

We ran a bivariate analysis of household income at the block-group level to both outage duration and fire

risk level and found no significant correlation between either variables. This validated the null hypothesis,
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that there was no income related spatial significance to fire risk or outage occurrence. This tells us that

these events are indiscriminate across income levels, but further analysis is required to better understand the

proportional impact of outages on income groups.

Research on wealth inequality finds that federal policies contribute to disparate accumulation of assets,

where top town policies exaggerate existing wealth gaps through policies that regulate income, investments,

inheritances, and interest rates (Alvaredo et al. 2013; Charles and Hurst 2002; Keister 2014; Volscho and

Kelly 2012). As a result, the US is already in a state of accelerated inequality, which is further fueled by

the growing frequency of climate related events. In “Beyond Disasters: A Longitudinal Analysis of Natural

Hazards’ Unequal Impacts on Residential Instability,” Howell and Elliott found that top down aid processes

pose an additional, important, and largely ignored contribution to growth in wealth inequality.

In the KQED segment “Fires Take Disproportionate Toll on Low-Income and Immigrant Communities” Mina

Kim investigates the role of natural disasters in exacerbating inequalities. While, natural disasters are seen

as a “great equalizer” impacting both rich and poor alike, wealth disparity emerges as a major determinant

during recovery. In Mina Kim’s interview with Rice Professor, James Elliot, he argues that the ability to

withstand long periods of time without power is largely determined by one’s access to social, economic, and

political resources. Islam and Winkel also argue that the relationship between climate change and social

inequality is “characterized by a vicious cycle,” where existing inequality causes disadvantaged groups suffer

disproportionately. Access to capital and the means to navigate the bureaucratic post-recovery labyrinth

often leaves those living precariously before disaster at the edge of homelessness after (Islam and Winkel,

2017).

While there are major differences between the experience of an extended outage and the damages incurred

during an extreme weather event, we argue that the two share important underlying attributes. First, they

are both increasing in frequency and unpredictability. Second, they are both inherently spatial, our analysis

found a positive correlation between fire risk level and outage location and duration. Third, they involve top

down actors, through the governments role in regulation, risk, and recovery, and are therefore subject to

systematic biases. Therefore, in our conclusion we argue that the longitudinal approach taken by Howell et

al. could provide a valuable framework for analyzing prevention strategies like the PSPS.
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Background/Literature Review

Disaster Recovery

In ‘Damages Done: The Longitudinal Impacts of Natural Hazards on Wealth Inequality in the United States”

Howell and Elliott analyze different subpopulations after natural disasters at the intersection of damages

from natural hazards and existing social inequalities. They followed a nationally representative sample of

respondents (“from the restricted, geocoded Panel Study of Income Dynamics”) through time (1999–2013)

“as hazard damages of varying scales accrued”. Their results indicate a positive correlation between top down

assistance after a natural hazard and wealth inequality. They found that wealth inequality, natural hazard

damages, and top down recovery assistance are dynamically linked; more FEMA aid an area received, the

more inequality grows (Howell and Elliot 2018). Their study focuses on natural disasters that cause damage

to property, or material assets, both public (roads, schools, levees, and other infrastructures) and private (

residences, businesses, and other physical possessions) (Howell and Elliot 2018). Today, the Disaster Relief

Act provides assistance for temporary housing and other forms of immediate relief, the administration of

hazard insurance programs, rebuilding damaged infrastructure, and providing low-interest loans to private

property and business owners and business owners (Howell and Elliot 2018). These strategies are aimed at

restoring and expanding local property and wealth-generation capacities. Today, FEMA distributes billions

of dollars of taxpayer money annually to disaster recovery.

Martin and Teles of the Urban Institute identify five ways that households get left behind during disaster

recovery. First, damage assessments, used to determine aid eligibility can be inconsistent and incomplete.

They are sometimes compromised by property accessibility or the “quality and consistency of inspectors

and their techniques.” Second, they argue that the FEMA eligibility process disproportionately impacts

low-income households because does not account for the disproportionate burden of repair costs on low-income

households. FEMA uses property damage assessments to determine long-term, temporary housing needs, but

if the property damage falls below the eligibility threshold the household is excluded from the program. Third,

the complicated process of, and short window for aid applications can leave less resourced groups behind.

Fourth, they identify the gaps in data collection as a limitation for local and federal agencies to assess and

provide necessary and proportionate aid to the most vulnerable communities. Finally, they argue that disaster

programs are implemented tactically rather than strategically. Disaster programs and data exist independent

from the world of urban development, and are not designed to incorporate or be incorporated into housing

and community challenges with the expected impact of climate change. Effective disaster recovery requires a

knowledge about housing current housing and socio-economic conditions in order to envision reconstruction
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or relocation (Martin 2018).

Power Outages

Extreme weather events are considered to be the main cause of wide-area electrical disturbances worldwide,

causing 80% of the large scale power outages between 2003 and 2012 (Moreno and Duncan, 2018). In

“Community resilience to power outages after disaster: A case study of the 2010 Chile earthquake and tsunami”

Moreno and Duncan found that in Chile, a series of natural disasters between 2010 and 2017, which triggered

numerous widespread power outages, disproportionately affected poor people. They also found that the

negative impact of power outages after disasters was higher in low-income communities than high-income

communities. The electric power systems is linked to other infrastructure (gas, water supply, telecom, banking

and financial services, security services, public health, agriculture, and transit system) and is even more

critical during an extreme weather events (Moreno and Duncan, 2018). Electricity is a ‘basic’ human needs

providing the means for “cooking, lighting, and thermal comfort” (Moreno and Duncan, 2018), outages lasting

longer than 24 hours become critical because of their impact on access to water, heat, and light (Palm, 2009).

Lack of power also becomes a barrier to staying informed, which carries critical importance during extreme

weather events.

Outside of disasters, power outages incur a cost on affected households. When households are interviewed,

they express a Willingness To Pay (WTP) to prevent a power outage. Lawton, Leora, et al. report that

households in the United States are willing to pay $26.27 in 2002 dollars on average (~$37.34 inflation adjusted)

to prevent a 12 hour blackout (Lawton, Leora, et al.). Ju-Hee Kim, Kyung-Kyu Lim and Seung-Hoon Yoo

in their literature review (Ju-Hee Kim, 2019) state that Hensher et al. found that the WTP for an 8 hour

blackout in the united states is $60 (Hensher, 2014), and state that Woo et al. found that the WTP for a 1

hour blackout in Hong Kong is $45 (Woo, 2014). Therefore, a power outage can be seen as a flat income

shock to a household, which is expected to have a higher impact on lower income households.

Climate Migration

Resilience must not only consider the adaptation of places that are vulnerable but also the ability to manage

migration and resettlement. Last year, the US had more than 1.2 million internally displaced climate migrants,

30 percent of which were the result of wildfires (IDMC). Climate migrants are individuals displaced by

conditions related to climate change, whether through evacuations, post disaster buyouts, or independent

relocation due to increased risk. In a study on post-disaster migration, Eyer et al. found that permanent

resettlement is most likely to occur in the urban areas of neighboring counties (Eyer et al. 2018). Most
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displaced households after California’s 2015 and 2017 fires moved to the neighboring counties and were still

living there a year after (Martin 2019). Assessing the consequences of relocation requires addressing the

maintenance or breakdown of social ties, and the integration of migrants into new communities. This invites

policy makers to consider how to incentivize receiving communities “to prepare for, build capacity for, and

integrate newcomers—especially while addressing their own climate-related resource gaps” (Martin 2019).

Data and Methods

Data Collection

On October 8, PG&E announced the implementation of a Public Safety Power Shutoff. They displayed the

current status of the power outage event on their “Outage Center” website. The website states that the data

is updated every 15 minutes. Using a website scraping script written in python using the Requests package,

the current status of the power outage event was collected every minute, to capture any irregularities in

update times. This code ran on a Virtual Private Server hosted by OVH, querying the site every minute and

saving the downloaded json data file as a text file.

The outage data contains a list of incidents. Each incident contains information such as “cause”, “crew

current status”, “current estimated time of restoration”, “estimated customers affected”, “hazard flag”, “last

update time”, “outage start time”, and the polygon area the outage is affecting.

The census block group outline shapefiles were downloaded from census.gov. The 2019 TIGER/Line shapefiles

for California were downloaded. Block groups were used in this project because that is the highest spatial

resolution of the median income data that we could collect.

The block group median household income data was downloaded from NHGIS.org, from the 2017 American

Community Survey: 5-Year Data. Specifically, we used Source code B19013 and NHGIS code AH1P.

To control for naturally existing fire risk, fire risk maps were downloaded from osfm.fire.ca.gov. Specifically,

the Sonoma county State Responsibility Area maps were downloaded. These maps were adopted by CAL

FIRE on November 7, 2007.

To account for infrastructure distribution, high voltage power line data was collected from the U.S. Energy

Information Administration (EIA). Data was downloaded from the U.S. Energy Mapping System website.

Only power lines with voltages between 69 kV and 765 kV are included.

To account for population distribution, household location data was collected from Zillow. Using a website

scraping script written in python using the Requests package, addresses in Sonoma county were collected. In
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addition, the tax assessed value and the estimated housing value was also collected.

Data Curation

Due to the frequency of queries, the power outage data contains multiple duplicate files. Using a MD5 hash

of the json data, duplicate files were removed. To translate the json data to a shapefile for analysis in R, the

python package pyshp was used. For this project, a couple of assumptions were made. First, shapefiles cannot

contain multiple geometry types, so all point location outages were excluded from the output shapefile. While

removing the point outages removed 44% of the total outage incidents, it only removed 0.85% of affected

households. Second, each power outage incident has a unique ID associated with it, so all of the data was

merged along this ID. It was assumed for each outage that the polygon area and the number of affected

customers remained constant for each incident. Third, it was assumed all power outages between October

8th to October 14th were due to the public safety power outage, and not due to other events such as wind or

lightning.

Median household income was merged with the TIGER shapefiles by joining along the census GEOID value.

For the high voltage power line dataset, only lines with status equal to “’IN SERVICE” were included, and

all other power lines were removed.

Spatial Exploratory Analysis

The first step in our analysis is to trim the data down to our analysis region, Sonoma County. Using the

census block group outlines, we only included data that intersected these block groups.
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Figure 1: Spatial Context
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Sonoma County Outages 
 No Address

Figure 2: Outage with no address

Sonoma County Outages 
 No Fire Risk

Figure 3: Outage with no fire risk

The next step in our analysis is overlaying and mapping the data of interest to show the spatial context. In

figure 1, we overlay the power outages on top of a map of Sonoma County. We also overlay address locations

as determined by Zillow, overlay fire risk zones, and overlay high voltage transmission line locations. The

8



purpose of this map is to visually identify any obvious spatial trends. Some discrepancies can be seen on

this map. First, it appears not all outage regions have an address inside of it, as shown in figure 2. This

could indicate a business location, such as power lines to a farm or timber operation, instead of a household.

Second, as expected, it appears most of the outages occur in regions with non-zero fire risk, but some outages

did occur in places without any fire risk as shown in figure 3. This indicates that PG&E is using some other

criteria besides fire risk in their decisions to shut off power. Third, many outage zones are not overlapping a

high voltage transmission line, and it does not appear the entire high voltage line has been shut down. This

indicates that PG&E is not just shutting down all power, and is instead actively making choices where to

shut off power.
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Sonoma County Median Income

Median Income (Dollars)

No Data
0 − 58,276
58,276 − 73,704
73,704 − 92,429
92,429 − 182,969

Figure 4: Map of Median Income

In figure 4, the median income data in Sonoma County is mapped. From a visual glance, there appears to be

a cluster of high income large rural block groups in the northwest and southwest. Zooming into the city core,

there appears to be a clustering of lower income block groups. However, we should be cautious about our

visual clustering assessments. Using Moran’s I clustering, we can assess if the data is clustered, randomly

distributed, or evenly distributed. Using rook contiguity, the following Moran scatterplot was obtained.
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Figure 5: Income Moran Scatterplot

From figure 5, a positive slope is seen. That means that the income data is more clustered compared to

a random distribution. In addition, the p value for this fit is very low, indicating that the clustering is

statistically significant.
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Sonoma County Outage Duration

Length of Outage (days)

0 − 0.5
0.5 − 1.0
1.0 − 1.5
1.5 − 2.0
2.0 − 2.5
2.5 − 3.0
3.0 − 3.5
3.5 − 4.0

Figure 6: Map of Outage Length

In figure 6, the length of each outage is mapped. It appears that the length of each outage is spatially random,

expect for a cluster of long outages in the east. Using Moran’s I clustering, we can determine if clustering

is present. A distance threshold of 4.19 km was used to construct the neighbor list. This distance is one

third of the maximum 1 nearest neighbor distance. This reduced distance was used to reduce the density of

neighbors, and isolated outages were removed for the Moran analysis. 12 isolated outages were removed, 5%

of the outage dataset.
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Figure 7: Income Moran Scatterplot

From figure 7, a positive slope is seen. That means that the outage data is more clustered compared to

a random distribution. In addition, the p value for this fit is very low, indicating that the clustering is

statistically significant. Both power outages and income data show spatial clustering, so median income could

possibly explain the spatial clustering of the power outages.
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Temporal Exploratory Analysis
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Figure 8: Outage Start and End Times

After getting a glimpse of the spatial relationships between the variables, we need to explore the temporal

characteristics of the data. The power outages did not all start at once, and did not all recover at once.

Figure 8 shows by ID when each outage started and when each outage ended. Translating from the Unix

timestamp, this figure shows some outages started at 00:52 Tuesday Oct 8. Most of the outages started

between 00:30 Wednesday Oct 9 and 04:00 Wednesday Oct 9. A few more outages occurred in the following

days, which are most likely normal outages due to equipment failure unrelated to the PSPS. In addition, in

this figure the outage IDs are sorted by start time. If power was restored in the same order as it was shut off,
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we would expect the outage end time line to be flat and smooth. However, the apparent random spread in

the outage end time indicates that outage start time and outage end time are not correlated with each other.

When fitted, the start times and end times only have an R2 of 0.15, the start time only explains 15% of the

variance of the end time. Therefore, two different procedures were used to turn off the power and to turn the

power back on.

The PSPS was rolled out in a relatively short period of time, approximately 3 hours. This means PG&E was

not monitoring individual neighborhoods for fire risk. They instead looked at very large geographic areas,

and made the decision to shut off power for the entire area at once. In contrast, the recovery process spanned

a period of approximately 24 hours. PG&E was actively making choices to restore power to different areas,

and had to choose an order of restoration. We expect that they would not be using any fire risk metrics in

this assessment because the fire risk event had passed. Therefore, we expect that the recovery process was

guided by engineering concerns, such as load balancing or current capacity, and by social concerns, such as

returning power to population dense areas first or prioritizing populations more likely to file lawsuits. These

concerns could cause low income disadvantaged populations to be restored last because these populations are

more likely to have older more vulnerable infrastructure and have less ability to hold PG&E accountable for

their choices.

Data Merging

To perform the analysis of the data, a common spatial reference frame needs to be used. Each data set was

transformed to LongLat coordinates. The data was merged to census block groups because the block groups

are contiguous, cover all of Sonoma County, and do not overlap each other. Two methods were used to merge

the outage data into the census block groups. The first method was to determine all of the outages that

intersected a block group, and then assign an outage length based on the maximum length outage. Figure 9,

shows the result of this spatial merging. The city core appears to have shorter outage lengths then the larger

rural block groups.
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Sonoma County Maximum Outage Length

Length of Outage (days)

No Outages
0 − 0.5
0.5 − 1.0
1.0 − 1.5
1.5 − 2.0
2.0 − 2.5
2.5 − 3.0
3.0 − 3.5
3.5 − 4.0

Figure 9: Maximum Outage Length

There were some concerns that the maximum length spatial merge could be sensitive to outliers in the data,

so a second method was used to merge outage length to the block groups, an area weighted approach. This

approach calculates the average power outage length experienced by a household in the block group.

Average Household Outage Length =
∑

outages (Outage Length) ∗ (Affected Households) ∗ (Block Group Intersection Area)
(Area of Outage)∑

outages (Affected Households)

It is assumed that households that lost power are evenly distributed inside each outage polygon. For each
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outage that intersected a block group, the area of the intersection was measured. The fraction of this

intersection area to the whole outage area determines the weight of each outage for the weighted average

calculation shown above. Figure 10, shows the result of this spatial merging. The outage lengths determined

by this method appear to be more randomly distributed in space.

Sonoma County Area Weighted Outage Length

Length of Outage (days)

No Outages
0 − 0.5
0.5 − 1.0
1.0 − 1.5
1.5 − 2.0
2.0 − 2.5
2.5 − 3.0
3.0 − 3.5
3.5 − 4.0

Figure 10: Area Weighted Outage Length

For the fire risk data, an area weighted approach was used to merge it into the block groups.

Average Fire Risk =
∑

(Fire Risk) ∗ (area of intersection with the block group)
(Area of the block group)
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It is assumed that the fire risk is on a linear scale, so high fire risk is only 3 times as risky as low fire risk.

Figure 11 shows the result of this spatial merging.

Sonoma County Block Group Fire Risk

Fire Risk

0 Risk
0 − 0.5 Risk
0.5 − 1.0 Risk
1.0 − 1.5 Risk
1.5 − 2.0 Risk
2.0 − 2.5 Risk
2.5 − 3.0 Risk

Figure 11: Block Group Fire Risk
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Results

Income vs Outage Duration
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Figure 12: Income Vs Maximum Outage Length

To assess our research question of whether power outages disproportionately affect lower income households,

we can plot median income vs outage duration for each block group. Figure 12 shows the relationship between

income and the maximum length of a power outage. From the plot, there is no observable trend. The p value

exceeds 0.05 indicating that there is no trend. And the R2 value is 0.01157, indicating that income does not

explain any variance in the power outage duration.

19



●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●● ●

●

●

●

●

● ● ●
●● ●●● ●●
● ●

●

●●

●

●

●

●● ●
●

●
●

●

●

●

●

● ●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●● ●●●

● ●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

● ●

●● ● ●●● ●● ●●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●

Median Income (Thousands of Dollars)

O
ut

ag
e 

Le
ng

th
 (

D
ay

s)

23 63 103 143 183

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Income vs Area Weighted Outage Length

Figure 13: Income Vs Area Weighted Outage Length

If we look at area weighted outage duration instead in figure 13, the conclusion is the same. The p value

exceeds 0.05 indicating no trend, and the R2 is 0.009578, indicating that income does not explain outage

duration.

Therefore, we cannot reject the null hypothesis, so outage length and income are not related to each other.
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Customers Affected vs Outage Duration
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Figure 14: Outage Count Vs Outage Duration

We can consider other criteria that PG&E uses when restoring power. One possible criteria is to restore

power to locations with more households. Figure 14 shows the relationship between customers affected and

the duration of the power outage. A significant negative trend at p = 0.03323 is found, indicating that

outages with more people are turned back on sooner. However, the R2 is very poor at 0.01956, which means

customers affected is not a good predictor of outage length.
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Figure 15: Outage Density Vs Outage Duration

We can also look at the spatial density of affected households. Figure 15 shows the relationship between

customers affected per square km and the duration of the power outage. A significant negative trend at

p = 0.01287 is found, reinforcing the previous finding that outages with more people are turned back on

sooner. However, the R2 is very poor at 0.02883, which means customers affected per square km is not a

good predictor of outage length.
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Fire Risk vs Outage Duration
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Figure 16: Fire Risk Vs Outage Max Length

Fire risk could be a criteria used by PG&E to turn the power back on. Earlier it was discussed that it

is likely that the recovery could only start once the fire risk had passed for the entire region, but it is

possible that PG&E can monitor local fire risk conditions to determine when to safely turn power back on for

individual outage events. Figure 16 shows the relationship between the block group fire risk and the block

group maximum outage length. A significant trend is detected, and the R2 is 0.3034, indicating much better

predictive power.
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Figure 17: Fire Risk Vs Outage Area Weighted Length

Figure 17 shows the relationship between fire risk and area weighted outage length. A significant trend is

also shown, but the R2 value of 0.1432 is worse than the maximum outage length relationship.
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Sonoma County Block Group 
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Residual

Overpredicted
Slightly Overpredicted
Slightly Underpredicted
Underpredicted

Figure 18: Fire Risk Vs Outage Max Length Residuals

We can assess the residuals of the fire risk prediction of maximum outage length. Figure 18 maps where fire

risk is not an accurate predictor of outage length. Obvious spatial clustering of the residuals is observed,

suggesting some spatial autocorrelation of outage length. A possible explanation of this autocorrelation is

power repair crews starting their repairs and inspections in rural areas, and moving inward to the dense city

cores, but we do not have data supporting this claim.
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Discussion and Conclusion

Discussion

Overall, our hypothesis that median income affects the duration of the PSPS is not true. PG&E’s method

for restoring power after a PSPS is not correlated with median income. It is observed that a slight trend

exists between the number of affected households and the duration of the PSPS. Of the analyzed factors, the

geographic fire risk is the most significant factor determining the length of the PSPS.

Future work could apply more sophisticated statistical models. Instead of looking at univariate regressions,

multivariate regressions could be used instead. The spatial autocorrelation effects of repair and inspection

processes can be explicitly modeled using spatially lagged variables. The regressions could be weighted

by population to more accurately capture trends. Future discussions with PG&E could illuminate some

inconsistencies in the power outage data, such as outages with no mapped addresses or households, and

explanations for overlapping outage zones.

Shortcomings

One of the shortcomings of our research is that we used household income as the sole indicator of wealth.

Wealth is the measured value of assets minus liabilities (Howell et al 2018). It is accumulated in the short

term through wages and other forms of income, in the long term through returns on investments, and

across lifetimes through intergenerational transfers (Howell et al. 2018). Our research uses 5- year income

estimates at the Census block group level from, limiting the study to an understanding of wealth as short

term accumulation. We chose this as an initial variable because of the ease of data access at the desired

administrative unit. We also recognized that the inequitable appreciation of real estate markets is a source of

unequal returns to households (Howell et al, 2018). A future path of inquiry is to investigate the scraped

2019 Zillow home value data. This data would need to be cross referenced with another data set, such as

census data, to validate the dataset. Once validated, Zillow home value data can be used as a proxy for

access to capital funds, and can be used to evaluate real estate appreciation.

Our research, like most on natural hazards, used a single case to analyze inequality after an extreme event.

Howell and Elliot, in contrast, used longitudinal, population-centered approach, because it links data from

broad sample to information on local experiences and across durations of time. This allowed them to analyze

how “damages influence wealth trajectories differently for different segments of the population, net of a wide

array of other individual, family, household, and contextual factors.” (Howell and Elliot, 2018). In ‘Extending

the Boundaries of Place,’ Siordia and Matthews argue that multilevel models offer statistical advantages
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over conventional single-level approaches. The conventional two-level model situates an individual in a single

context, which is too reductive when analyzing socio-spatial significance: “If an analytical model is seeking

to examine pathways and exposures linking people to place then it would seem that several functionally

meaningful units reinforce this relationship” (Siordia and Matthews). They argue that the emphasis on

boundaries undermines the spatial and temporal scales of human behavior. Our study was limited by both

administrative boundaries and limited variables. However, when we found no significant relationship between

household income or home value and fire risk / outage severity, we decided not to pursue further measures

of wealth or vulnerability. Applying a longitudinal- population centered approach could provide a more

contextually nuanced analysis of the impact of PSPS on wealth over the next decade to better understand

how it shapes access and advantage.

Another set of variables that would be valuable to include in an analysis of the PSPS impact is community

resilience. Community resilience is “the ability of a social system to respond and recover from disasters and

includes those inherent conditions that allow the system to absorb impacts and cope with an event, as well

as post-event” (Cutter et al. 2008). Empirical studies addressing community resilience during long outages

have found that people rely heavily on community networks ( Moreno and Duncan, 2008). In complement to

Howell and Elliot’s strategy, a field study of community networks could help assess resilience strategies going

forward.

Conclusion

Looking at the short term, there are several strategies that policy makers could implement to mitigate the

effects of future PSPS on vulnerable populations. Moreno and Duncan argue that “satisfying people’s basic

needs and reducing the level of uncertainty and insecurity after an outage could contribute to lessening

the public’s level of discomfort and discontent.” Providing more information about the estimated duration

of an outage and supplying alternatives “such as: backup generators, battery torches, portable chargers,

camping stoves and heaters” (Moreno and Duncan, 2018), would mitigate the impact of an extended outage

on vulnerable households. Purchasing a generator is a financial burden that many households can’t take

on. Access to an alternative source of energy is therefore a clear indicator of the impact that wealth has

on the experience of an outage. Publicly subsidized collectively owned generators could provide a one short

term solution to increasing access to alternative sources of energy during an outage. In the long term, a

dynamic restructuring of infrastructure and residential settlement patterns is necessary if people want to

continue to live in regions with a high probability of weather related events. This would require a dynamic

approach in both strategy and tactics. In the era of climate consequences, public policy, urban design, and
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infrastructure engineering must be intricately engaged. On the public policy side, research, resources and

assistance needs to be engaged for both communities experiencing climate disasters and those poised to

receive climate migrants. This is also tied to urban design strategies, where relocating entire communities

through large scale buyouts is necessary to clear the urban wild interface where properties are both the

most vulnerable and worsening the spread of wildfires (and in the case of hurricanes, rewilding the currently

occupied floodplain is a strategy towards mitigating the severity of flooding). In terms of infrastructure,

one solution currently being debated is a state buyout of the power grid. This would certainly improve

accountability and potentially reduce corruption, but it would not address the risk that the existing grid

poses. During fire seasons, Northern California receives a significant amount of sunlight (according to a

rooftop analysis by Google’s project sunroof), a municipal solar power system could be an effective alternative

to a distributed power grid, effectively eliminating any impact of the PSPS.
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