
The 13th International Conference on Structural

Safety and Reliability (ICOSSAR 2021),

June 21-25, 2021, Shanghai, P.R. China

J. Li, Pol D. Spanos, J.B. Chen & Y.B. Peng (Eds)

Tensor Network Contraction For Network Reliability Estimates
Kyle Shepherd�a and Leonardo Dueñas-Osorio�b

aPhD Student, Dept. of Civil Engineering, Rice University, Texas, Houston, United States, E-mail: kas20@rice.edu,

ORCID:0000-0002-8220-7448
bProfessor, Dept. of Civil Engineering, Rice University, Houston, United States, E-mail: leonardo.duenas-osorio@rice.edu,

ORCID:0000-0002-7138-7746

ABSTRACT: Quantifying network reliability is a hard problem, proven to be #P-complete
[1]. For real-world network planning and decision making, approximations for the network
reliability problem are necessary. This study shows that tensor network contraction (TNC)
methods can quickly estimate an upper bound of All Terminal Reliability, RelAT R(G), by
solving a superset of the network reliability problem: the edge cover problem, EC(G). In
addition, these tensor contraction methods can exactly solve source-terminal (S-T) reliability
for the class of directed acyclic networks, RelS−T (G).

The computational complexity of TNC methods is parameterized by treewidth, signifi-
cantly benefitting from recent advancements in approximate tree decomposition algorithms
[2]. This parameterization does not rely on the reliability of the graph, which means these ten-
sor contraction methods can determine reliability faster than Monte Carlo methods on highly
reliable networks, while also providing exact answers or guaranteed upper bound estimates.
These tensor contraction methods are applied to grid graphs, random cubic graphs, and a se-
lection of 58 power transmission networks [3], demonstrating computational efficiency and
effective approximation using EC(G).

1 Introduction

1.1 Motivation

Important infrastructure systems such as elec-
trical transmission grids, potable water distri-
bution, and roadway transportation have been
modeled as networks for analysis and design
[4] [5]. As these networks grow in size and
become more complex, such as the addition
of distributed power generation and energy
storage in electrical networks [6], better algo-
rithms are needed to analyze these networks
and guarantee their safety and reliability. The
tensor network contraction (TNC) algorithm
we propose in this work is a step in this direc-
tion.

1.2 Problem Definition

A network is a graph consisting of nodes that
describe a discrete component of the network
(such as a power plant or household) and
edges that describe a connection between two
nodes (such as power lines or water pipes).
We will consider a model of a graph G =
(N,E) where N is the set of labeled nodes
n1, ...,n|N| and E is the set of labeled edges
e1, ...,e|E|. Each node ni ∈ N has a list of
attributes [S,T ]. In particular, ni.S, the S at-
tribute of variable ni, is a Boolean variable
equal to True if ni is a source node, and ni.T
is a Boolean variable equal to True if ni is a
terminal node. Each edge ei ∈ E has a list
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of attributes [np,ns,bi, p]. In particular, ei.np
is the predecessor node, ei.ns is the succes-
sor node, ei.bi is a Boolean variable equal to
True if the edge is bidirectional and False if
the edge is directed, and ei.p is the edge reli-
ability, the probability the edge exists.

To measure graph reliability, we define a
function C(Gr), where C(Gr) = 1 if there is
a path from a source node to every terminal
node for the particular graph realization Gr,
indicating a Connected graph, and C(Gr) =
0 otherwise. A graph realization is defined
with a vector r of length |E| where ri = 1 if ei
exists, and ri = 0 otherwise. The probability
of a given graph realization is defined below:

P(Gr) =
|E|

∏
i=1

1− ri − ei.p+2∗ ri ∗ ei.p

The set of all possible realization vectors is R.
This set contains 2|E| elements.

Reliability is defined as Rel(G) =

∑r∈R[C(Gr) ∗ P(Gr)]. Rel(G) will take on
a value between 0 and 1, where a higher
Rel(G) is desired in practice.

This model as defined allows us to con-
sider two cases of network reliability that are
important for managers of infrastructure sys-
tems. All Terminal Reliability is RelAT R(G)
where all edges are bidirectional and all nodes
are terminal nodes. Source-Terminal reliabil-
ity is RelS−T (G) where all edges are directed,
and in general the set of source and terminal
nodes is much smaller than the set of nodes.
For this work, only one source and one ter-
minal node will be considered for RelS−T (G)
(also known as 2-terminal reliability).

1.3 Justification and Objectives

As the time to compute the reliability of a
probabilistic graph scales exponentially with
the size of the graph [1], a naïve brute force
enumeration of all graph realizations is not
feasible for the large graphs frequently en-
countered in infrastructure systems. There-
fore, different approaches are needed to cal-
culate values of Rel(G).

One approach is to develop an algo-
rithm with parameterized complexity to solve

Rel(G). While these algorithms may scale ex-
ponentially in the worst case, they may not
scale as fast for the problems we are inter-
ested in. Another approach is to solve a super-
set problem of Rel(G). In this work, the edge
cover problem will be shown to be a super-
set problem of RelAT R(G). A final approach
is to give up on obtaining an exact answer
and instead obtain an approximate answer for
Rel(G) using Monte Carlo (MC) simulation.

The objective of this work is to efficiently
calculate values of Rel(G) in a principled
way. This work will formulate TNC algo-
rithms for exactly solving RelS−T (G) when
the graph is directed and acyclic, and exactly
solving an upper bound for RelAT R(G) by
solving the edge cover problem. These pro-
posed TNC algorithms will be shown to have
computational complexity parameterized by
the treewidth of the graph. The performance
of these algorithms will be tested on grid
graphs, random cubic graphs, and a selection
of real world transmission graphs.

2 Background

2.1 Exact Solvers

Binary Decision Diagram Methods
The current state-of-the-art for exactly

solving undirected K-Terminal reliability
problems (which includes ATR and S-T) is
using binary decision diagrams [7]. These
methods consider one edge at a time, factor-
ing the graph into subgraphs, and pruning by
identifying isomorphic graphs [8].

However, the pruning is not very efficient.
In the worst case for All Terminal Reliability
problems, the number of subgraphs to be con-
sidered is proportional to BELL(Fmax), where
BELL(k) is the kth bell number and Fmax is the
linear-width, or pathwidth, of the graph. If
the pathwidth of the graph is small, this algo-
rithm is still useful, but BELL(k) > ( k

e ln(k))
k

[9], growing faster than 2n, so binary decision
diagram methods quickly become computa-
tionally infeasible.
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#SAT solvers
The edge cover problem RelEC(G) is a su-

perset of RelAT R(G). We can define

RelEC(G) = ∑
r∈R

[EC(Gr)∗P(Gr)]

where EC(Gr) = 1 if every node has at least
one existing edge, and EC(Gr) = 0 other-
wise. RelAT R(G) ⊂ RelEC(G) because for
every case of RelAT R(G) every node must
have at least one existing edge to ensure con-
nectivity, but RelEC(G) 6⊂ RelAT R(G) because
unconnected “islands” of nodes can satisfy
EC(Gr) while not satisfying global connec-
tivity for C(Gr).

Rewritten in conjunctive normal form
(CNF) as a monotone #SAT problem [10]
[11]:

EC(Gr) =
∧

ni∈N

(
∨
j∈ni

e j(r))

where each node n has a set of associated
edges j ∈ ni if edge e j has node ni as a pre-
decessor or successor. The function e j(r) is
equal to True if r j = 1 for graph realization r.

Our ability to write this problem in CNF
form, a set of clauses which all must be true,
and each clause is satisfied if at least one vari-
able in the clause is true, allows it to be solved
by powerful existing model counting solvers
such as cachet [12], miniC2D [13], and d4
[14]. However, these solvers are considered
to be “black-box” solvers, so there is no abil-
ity to estimate their computation time for an
arbitrary graph G.

2.2 Probabilistic Solvers

Monte Carlo (MC) Methods
If a set of K independent random realiza-

tions of a given graph are generated, Grand ,
then Rel(G) can be estimated from this ran-
dom sample of graphs. C(Grand) can be con-
sidered to be a set of Bernoulli trials, a bino-
mial experiment B(K, p) so MC methods can
be used to estimate the p of the Bernoulli pro-
cess and provide a confidence interval.

Given a specific simulation of Grand , the
log-likelihood profile of p can be obtained.

Figure 1: Needed MC trials for a given ε at a 95%
confidence interval shown on a log-log scale graph: As
ptrue decreases, the number of needed MC trials for a
given relative error increases.

The most likely value of p, ptrue, is obtained
by finding the maximum of the profile. To
obtain a confidence interval, we can use the
profile likelihood method [15]. For a given
desired 1−α and ε = ptrue

p−(1−α)%
, the number

of needed samples K can be calculated.
For a range of ε values, Figure 1 shows on

a log-log scale how the number of needed MC
samples decreases as ptrue increases. Specif-
ically, if ptrue increases by a factor of 10, the
number of trials needed decreases by a factor
of 10 while ptrue < 0.1.

The advantage of MC Methods is the num-
ber of samples required is only proportional
to 1

ptrue
and is not proportional to the problem

size. The drawback is that ptrue is not known
ahead of time, so the number of samples re-
quired could be large if ptrue is very small and
cannot be known ahead of time, and stopping
rules must be used, adding uncertainty.

Fully Polynomial-time Randomized Ap-
proximation Scheme (FPRAS)

From the analysis above, MC methods be-
come infeasible for estimating graph failure
rates when Rel(G) is close to 1. In response
to this drawback, Karger [16] developed
a Fully Polynomial-time Randomized Ap-
proximation Scheme (FPRAS) for estimating
(1−RelAT R(G)) that runs in O( |E||N|4

ε3 ln(|N|))
time.

However, the FPRAS algorithm only
works when (1 − RelAT R(G)) < |N|−4. For
most engineering applications, the failure
chances we care about are small. For ex-
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ample, 1% for 50 year earthquake hazards
[17] or 2.0 ∗ 10−6 per year for nuclear power
plants [18]. Therefore, highly reliable engi-
neering networks with more than (1 − 2.0 ∗
10−6)−

1
4 ≈ 27 nodes cannot be practically

solved using known FPRAS methods. In
addition, this FPRAS algorithm is limited
and only works for All-Terminal Reliability.
While extensions exist for K-Terminal prob-
lems, such as the one developed by Pare-
des [19] which works well in practical set-
tings, these extensions rely on NP-oracles and
therefore have exponential worst case behav-
ior.

Therefore, we desire an approximation al-
gorithm that is not dependent on Rel(G),
and is instead parameterized by some other
graph property that is small for engineer-
ing networks of interest. TNC algorithms
fit this desire, being parameterized by the
treewidth of a graph, which is usually small
and constrained for the almost-planar engi-
neering networks we care about.

3 Tensor Network Contraction (TNC)

3.1 Definitions

The goal of TNC is to write the underly-
ing satisfiability problem as a series of tensor
products. Similar techniques have been in-
vestigated in the physics community to solve
specific quantum mechanics problems [20]
[21]. Each clause in the satisfiability prob-
lem is represented as a tensor T c

x1,x2,...,xk
. If

the variables x1,x2, ...,xk satisfy the underly-
ing clause, then Tx1,x2,...,xk = 1. For exam-
ple, the T c that encodes the Boolean clause
(x1 ∨ x2 ∨ x3 ∨ x4) is:

T c
x1,x2,x3,x4

=

{
0, if x1 = x2 = x3 = x4 = 0
1, otherwise

The number of solutions to the satisfiabil-
ity problem can be calculated by applying the
tensor product to every clause tensor T c. The
tensor product is defined as

T p
x1,...,xk,z1,...,zk

= T c
x1,...,xk,y1,...,yk

⊗T c
y1,...,yk,z1,...,zk

where ⊗ expands into

T p
x1,...,xk,z1,...,zk

= ∑
yi∈Y

|yi|

∑
yi=0

T c
x1,...,xk,y1,...,yk

∗T c
y1,...,yk,z1,...,zk

where Y is the set of all variables in common
between the two tensors, and |yi| is the num-
ber of states that variable yi can take. While
yi can take an arbitrary number of states, the
remainder of this work will only consider a
two-state Boolean variable.

One complication is that a tensor product
is only clearly defined if each variable ap-
pears exactly once or twice, while in many
satisfiability problems a variable can appear
more than twice. This complication can be
addressed by assigning each T c a unique set
of variables, and then creating additional vari-
able tensors T v to apply constraints on the
variables.

Two common constraints are defined be-
low. To constrain a Boolean variable x1 to
take the opposite value of x2 (as needed for a
Boolean formula containing x1 and ¬x1), the
following tensor T v

x1,x2
is set as

T v
x1,x2

=


1, if x1 = 0 and x2 = 1
1, if x1 = 1 and x2 = 0
0, otherwise

To constrain a Boolean variable x1 to take
the same value of x2 and apply a probability
p of both variables being true (as needed to
define an unreliable network edge), the tensor
T v

x1,x2
is set as

T v
x1,x2

=


p, if x1 = 1 and x2 = 1
1− p, if x1 = 0 and x2 = 0
0, otherwise

3.2 Graph Representation

Tensor multiplications can be represented as a
node and edge graph, GT , where each tensor
is a node and each variable is an edge. An ex-
ample of a tensor graph can be seen in Figure
2a. A tensor product can be represented as
an edge contraction on this graph. The con-
traction of edge X1 is visually shown in Fig-
ure 2b. Once all edges are contacted, only a
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Figure 2: Example Tensor Graph [a] and example ten-
sor contraction of edge X1 [b]

scalar value remains, counting the number of
solutions to the Boolean problem.

3.3 Contraction Ordering

Care must be taken when choosing the
order to perform the edge contractions.
Assuming Boolean variables, the prod-
uct T c

x1,...,xn,y1,...,yn
⊗ T c

y1,...,yn,z1,...,zn
requires

2|x|+|y|+|z| multiplications and additions, and
2|x|+|z| numbers need to be stored in memory
for the resulting tensor. Markov, Igor L and
Shi, Yaoyun show how to determine an op-
timal edge contraction ordering to minimize
|x|, |y|, and |z|, also known as elimination or-
dering, from an optimal tree decomposition
of the line graph of GT , LG(GT ) [22]. Du-
mitrescu et al. [23] demonstrate how algo-
rithms from the PACE 2017 challenge [2] can
be used to obtain better approximate tree de-
compositions for some tensor graphs repre-
senting quantum many body problems.

Harvey, Daniel J and Wood, David R pro-
vide a few different upper bounds for the
treewidth of LG(GT ), tw(LG(GT )), bounding
the size of the largest tensor [24]:

tw(LG(GT ))< (tw(GT )+1)∗Dm(GT )−1

where Dm(GT ) is the maximum degree of
graph GT . Dudek et al. [25] also show how
high-rank tensors can be factored into a tensor
tree to further minimize memory and compu-
tational requirements of the TNC.

Overall, in the worst case for infrastructure
networks with bounded max degree (due to
physical limitations), the largest number of

variables for a single tensor is linearly propor-
tional to the treewidth of GT . Therefore, the
computational complexity is at most 2C∗tw(G),
where C is a constant between 1 and Dm(GT ).

For the following formulations, if every
variable tensor is contracted into an adjacent
clause tensor, the resulting tensor graph is iso-
morphic to the underlying graph G. There-
fore, for these formulations, tw(GT ) is equal
to tw(G).

3.4 All Terminal Reliability Formulation

For RelAT R(G) there is no known polynomial
sized satisfiability equation, unless auxiliary
variables are used [19]. Therefore, a tensor
graph for the edge cover problem, RelEC(G)
will be formulated instead. The edge cover
problem is satisfied if every node in the graph
G has at least one existing edge. Therefore,
the clause for a node n with connecting edges
e ∈ E is (en

1 ∨ en
2 ∨ ...∨ en

i ).
Each edge ei has a probability p of existing,

and each variable en
i takes the same correlated

state for every superscript n. Contracting the
tensor graph GT of these tensors will yield the
probability of a satisfying edge cover for the
graph G.

3.5 S-T Reliability Formulation

For RelS−T (G), the problem is satisfied if
any inbound edge connected to the terminal
node nt is connected to a “marked” node. A
node is marked if any of its inbound edges is
connected to a “marked” node or a “source”
node. For an acyclic directed network, a node
nb is “marked” if and only if there is a path
from the source node to node nb (This state-
ment does not hold true for graphs with cy-
cles). Even in this restricted case, RelS−T (G)
is still a #P-complete problem [26].

The clause for the terminal node nt with in-
bound edges e ∈ E is (ent

1 ∨ ent
2 ∨ ...∨ ent

i ).
For a node between the source and terminal

nodes nb with inbound edges e ∈ E, it must
satisfy the following clause:

(mnb ∧ (enb
1 ∨ ...∨ enb

i ))∨
(¬mnb ∧¬(enb

1 ∨ ...∨ enb
i ))
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where mnb is a variable indicating if node nb
is marked.

For each variable ei, it must be constrained
to only be True with probability ei.p when
the tail is connected to a “marked” or source
node, mnb = 1, and always False when the tail
is not connected to a “marked” node. There-
fore, the corresponding variable tensor for
edge i outbound from node b and inbound to
node y is:

T ve

mnb,y ,e
ny
i
=

ei.p, if mnb,y = 1 and eny
i = 1

1− ei.p, if mnb,y = 1 and eny
i = 0

1, if mnb,y = 0 and eny
i = 0

0, if mnb,y = 0 and eny
i = 1

In addition, the directed “marked” variable
mnb,y must be constrained to the same value
as mnb . Contracting the tensor graph GT of
these tensors will yield the exact probability
of a satisfying path from the source node to
the terminal node for the graph G.

3.6 Tensor Network Contraction (TNC) Ad-
vantages

TNC algorithms have many advantages over
the previously described exact solvers and
probabilistic solvers. The upper bound com-
putational complexity of 2C∗tw(G) is signifi-
cantly better than the BELL(Pathwidth(G))
of the binary decision diagram methods and
the unknown upper bounds of the #SAT meth-
ods. This bound is not dependent on Rel(G),
so TNCs can solve some highly reliable net-
works faster than probabilistic solvers. The
computational effort of a TNC can be known
ahead of time (after the approximate tree
decomposition), so reliability engineers can
confidently choose the most efficient reliabil-
ity solver algorithm. In addition, for infras-
tructure networks of interest, they are usually
near-planar, which bounds treewidth to 2 ∗√

6∗ (k+1)∗ |N|) [27] where k is the num-
ber of allowed crossings for each edge, and
treewidth is frequently lower than this bound
[28].

TNCs only require vectorized multiplica-
tion and addition operations which are very
efficient for CPUs and GPUs to compute,
while binary decision diagram methods and
#SAT methods require many conditional if-
then statements which are more difficult to
optimize. While probabilistic solvers are per-
fectly parallel (each sample can be done on
a separate computer), the individual tensor
contractions can also be broken up and dis-
patched to multiple parallel computing units.

4 Results and Discussion

4.1 Benchmark Graphs

To evaluate the empirical performance of the
proposed TNC algorithm, a few classes of
graphs will be considered. The first con-
sidered class of graphs are grid graphs. As
most infrastructure networks are usually near-
planar, grid graphs can be considered as the
ideal case of planar graphs.

Second, random connected cubic graphs
will be considered. Using a set of reliabil-
ity preserving transformations [29], and by
splitting high degree nodes into a chain of de-
gree 3 nodes connected by unfailing edges,
all graphs can be converted to a cubic graph
with equivalent Rel(G). A 1-Flipper Markov
Chain Monte Carlo (MCMC) algorithm will
be used to uniformly generate these random
cubic graphs [30].

Third, a collection of 58 US power trans-
mission networks [3] will be considered.
These graphs will be reduced using reliability
preserving transformations before reliability
calculations are performed.

All benchmarks are performed on a Intel
Core i7-4810MQ CPU @ 2.90GHz, with 16
GB of RAM. All code is single threaded.
The code used to generate these graphs can
be seen at this link: https://github.com/
KyleAnthonyShepherd/SISRRA_tensor_
contraction/tree/main/ICOSSAR_2021

https://github.com/KyleAnthonyShepherd/SISRRA_tensor_contraction/tree/main/ICOSSAR_2021
https://github.com/KyleAnthonyShepherd/SISRRA_tensor_contraction/tree/main/ICOSSAR_2021
https://github.com/KyleAnthonyShepherd/SISRRA_tensor_contraction/tree/main/ICOSSAR_2021
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4.2 Grid Graphs

4.2.1 Computational Time

As seen in Figure 3a, as the grid dimension in-
creases, both the number of subgraphs for the
binary decision diagram method and the num-
ber of floating point operations for the TNC
increases exponentially. Figure 3b shows the
wall clock time taken for each method. In
both cases, the slope of the TNC is signifi-
cantly smaller than the binary decision dia-
gram method, showing significant computa-
tional advantages for calculating EC(G) and
RelS−T (G).

Further computational advantages can be
seen if one dimension of the grid graph is
fixed in size (8 nodes is large enough for a
non-trivial treewidth size and small enough
to be computed quickly by both methods).
As seen in Figure 3c, as n increases for the
8xn grids, both the number of subgraphs for
the binary decision diagram method and the
number of floating point operations for the
TNC increases linearly. However, as seen
in Figure 3d, the wall clock time taken for
the binary decision diagram method increases
quadratically (each subgraph needs an O(|E|)
connectivity check) while the TNC time only
increases linearly. For graphs of bounded
treewidth, TNCs show significant computa-
tional improvement.

4.2.2 Monte Carlo (MC) Comparison

As the TNC only bounds RelAT R(G) by cal-
culating EC(G), we can evaluate the qual-
ity of this estimate by determining the num-
ber of MC trials needed to obtain bounds
of RelAT R(G) better than EC(G). Using a
95% confidence interval, we can calculate the
number of MC trials needed to create a confi-
dence interval that excludes EC(G).

For an edge failure rate of 0.01, both
RelAT R(G) and EC(G) are approximately
constant at 0.9996. Approximately 24 million
MC trials are needed to rule out EC(G), and
this count is insensitive to the size of the grid.
Therefore, for reliable grid graphs, EC(G) is
a good bound.

Figure 3: Computational complexity and wall clock
time for nxn and 8xn grid graphs. Subgraphs and
RELAT R(G) are BDD calculations, and floating point
operations and EC(G) are TNC calculations.

Figure 4: Approximated treewidth, pathwidth, and
treewidth of the line graph of Grc for 10,000 randomly
generated connected cubic graphs Grc, and the ratios
between these widths.

4.3 Random Connected Cubic Graphs

4.3.1 Computational Time

A random selection of 10,000 random con-
nected cubic graphs Grc from node count
|N| = 20 to |N| = 400 were generated.
The treewidth of Grc and the treewidth of
LG(Grc) were computed using an approxi-
mate treewidth solver [2] for 6 seconds. The
pathwidth of Grc was estimated from the tree
decomposition of Grc. As seen in Figure
4, there is a linear increase in approximated
treewidth as graph size increases.

4.3.2 Monte Carlo (MC) Comparison

A random selection of 10,000 random con-
nected cubic graphs Grc from node count
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Figure 5: The empirical cumulative distribution func-
tion of randomly generated connected cubic graphs of
size |N| that need less than X MC trials of RelAT R(G) to
rule out the bound from EC(G) at the 95% confidence
level.

|N| = 20 to |N| = 50 were generated and
solved for EC(G) and RelAT R(G). Each
edge had a failure rate of 0.01 to represent
a network with high reliability. EC(G) is
very tightly constrained, with a standard de-
viation of 1.1 ∗ 10−12 for all |N|, and can
be estimated as EC(G) ≈ (1 − |N| ∗ 0.013).
RelAT R(G) had greater variance, with a range
of [0.92265,0.99998].

For each graph, the number of MC trials
needed to rule out the EC(G) bound at the
95% confidence interval was calculated. Fig-
ure 5 shows the proportion of cubic graphs
that need less than X MC trials to rule out the
EC(G) bound. The observed segmented stair-
step pattern is unusual, and is likely caused
by the graphs in each segment sharing some
topological feature such as a bridge.

As graph size increases, the empirical cu-
mulative distribution function pushes up and
to the left, indicating more graphs need fewer
MC trials to rule out the EC(G) bound. This
means as highly reliable cubic graphs be-
come larger, EC(G) becomes a worse bound-
ing value of RelAT R(G).

Overall, despite the computational advan-
tages of TNCs, the treewidth of these graphs
scales linearly with size, resulting in com-
putational complexity growing exponentially
with the size of the graph. In addition, EC(G)
as measured by TNCs is a poor bounding
value for many cubic graphs, only a few MC
trials are needed to achieve a better bounding
value. This bounding value becomes worse as

Figure 6: Treewidth and tw(LG(G)) comparison be-
tween grid graphs, random cubic graphs, and power
transmission grids.

the graph size increases.

4.4 Power Transmission Grids

The RelAT R(G) and EC(G) of 58 transmis-
sion power grids [3] were calculated. Table
1 shows the node and edge count of these
graphs after reliability preserving reductions,
and the result of the RelAT R(G) and EC(G)
calculations at edge failure rate 0.5, 0.1 and
0.01. Some graphs were omitted due to trivial
structure or inability to compute RelAT R(G).

Figure 6 shows the treewidth and
tw(LG(G)) of the power grids in rela-
tion to the previously analyzed graphs. In
general, the treewidth of the power grids
is smaller than equal sized cubic graphs,
making them very computationally efficient
to solve. However, tw(LG(G)) of the power
grids are significantly greater than their
treewidth, comparable to tw(LG(Grc)) of
equal sized cubic graphs, due to the presence
of high degree nodes in the power grids.
The tensor factoring techniques in [25] may
reduce these large values of tw(LG(G)).
Despite this, TNCs still quickly solve EC(G)
and RelS−T (G) of these graphs in comparison
to the binary decision diagram techniques.

When each edge only has a 1% chance of
failure, EC(G) is a good approximation for
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Figure 7: Number of MC Trials needed to rule out
EC(G) at the 95% confidence level for each power grid
at different edge failure rates p.

37 of the power grids as seen in the tall green
bars in Figure 7. It would take more than
1,000,000 MC trials to rule out the EC(G) ap-
proximation for these graphs. For the largest
power grids, only 1,000 MC trials are needed
to rule out EC(G).

5 Conclusion

5.1 Results Summary

Overall, TNCs for solving RelS−T (G) and es-
timating RelAT R(G) demonstrate many com-
putational advantages on many practical net-
works. These methods are parameterized by
the treewidth of the network, so graphs with
low treewidth such as grids and the 58 power
transmission networks can be quickly solved.
In the general case as represented as random
cubic graphs, TNCs are not as computation-
ally efficient due to the linear relationship
between treewidth and random cubic graph
size. In addition, the presence of high de-
gree nodes in the power transmission net-
works introduces a large constant factor be-
tween treewidth and the computationally rele-
vant treewidth of the line graph. Despite these
limitations, the tensor methods are still 10 to
100 times faster than the state-of-the-art bi-
nary decision diagram methods as measured
by wall clock time.

When estimating RelAT R(G) by calculat-
ing EC(G), TNCs show excellent results on
grid graphs. As edge failure rate decreases,
as is the case for highly reliable networks,
EC(G) becomes a better estimator. This in-
crease in estimation accuracy is likely due

to the fact that as edge failures become less
likely, multiple edge failures needed to dis-
connect the graph become exponentially less
likely, which heavily discounts occurrences
of disconnected “islands” of nodes that sat-
isfy EC(G) and do not satisfy RelAT R(G).

However, EC(G) is only a good estimate
for RelAT R(G) for a small subset of cubic
graphs and 37 out of 55 of the power grids.
This work did not investigate why EC(G) was
a good estimate for these graphs, although it
is likely due to topological bottlenecking ef-
fects.

5.2 Future Work

In relation to algorithm design, the primary
bottleneck to TNCs is the memory require-
ment. Techniques such as sparse arrays, on-
line matrix compression, or tensor factoring
can be used to reduce the memory footprint
of large tensors. Additionally, many quan-
tum computer algorithms can be described as
tensor contractions [31] [32], so these TNCs
may be able to exploit quantum computers to
achieve a quantum speedup over traditional
algorithms.

As EC(G) is not always a good approx-
imation for RelAT R(G), it would be benefi-
cial to classify the graphs where EC(G) is a
good approximation of RelAT R(G). If an al-
gorithm can quickly identify these classes of
graphs, then tensor methods can quickly and
confidently estimate RelAT R(G) using EC(G).
In addition, determining how to incorporate
TNCs with other #SAT solvers into a virtual
best solver will greatly expand the classes of
graphs where EC(G) can be quickly solved.

While RelS−T (G) can be exactly solved by
tensor methods for directed acyclic graphs,
the introduction of cycles causes drastic mul-
tiplicative overcounting of solutions if the
given RelS−T (G) formulation is used. De-
termining a better tensor graph for solving
RelS−T (G) or determining how to compen-
sate for the multiplicative overcounting can
expand the number of graphs that can be ex-
actly solved by TNCs.
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Table 1: Power Transmission Network Attributes

ID |V| |E| TW PW LGW Reltime Rel0.5 Rel0.1 Rel0.01 ECtime EC0.5 EC0.1 EC0.01

1 16 29 4 5 8 0.017332 0.12167154 0.98957460 0.99999087 0.174876 0.25502051 0.99065582 0.99999096

2 19 33 4 4 8 0.000186 0.05365770 0.98211723 0.99998379 0.000333 0.17822816 0.98764111 0.99998795

3 9 18 5 5 9 0.000597 0.42333221 0.99636464 0.99999694 0.000723 0.52156830 0.99651838 0.99999695

4 12 20 4 4 6 0.000000 0.12807083 0.97834075 0.99988980 0.000172 0.31490231 0.99091973 0.99999098

5 4 6 4 3 5 0.000000 0.59375000 0.99581400 0.99999597 0.000000 0.64062500 0.99605700 0.99999600

6 24 48 5 6 11 0.004095 0.06873492 0.98659392 0.99998786 0.000753 0.15051040 0.98749687 0.99998794

7 13 24 5 5 9 0.004037 0.19829893 0.99110197 0.99999191 0.000333 0.31878930 0.99177120 0.99999197

8 16 32 5 5 9 0.004749 0.16953775 0.99180050 0.99999289 0.000913 0.31583457 0.99342016 0.99999394

9 19 34 4 4 7 0.000333 0.05261123 0.98166897 0.99998374 0.001684 0.17841807 0.98687403 0.99998697

10 9 15 4 4 6 0.000000 0.27203369 0.99197148 0.99999289 0.000256 0.42657471 0.99376760 0.99999397

11 7 11 4 3 6 0.000000 0.34082031 0.99218972 0.99999290 0.000513 0.48193359 0.99398015 0.99999399

12 17 36 6 6 12 0.023612 0.22980855 0.99329227 0.99999393 0.002440 0.32829193 0.99430582 0.99999493

13 6 9 4 3 5 0.000333 0.38671875 0.99237749 0.99999291 0.000334 0.51367188 0.99409283 0.99999400

14 18 32 4 3 8 0.000342 0.05216674 0.97114616 0.99988185 0.000333 0.19721385 0.98784985 0.99998797

15 23 39 6 6 9 0.005238 0.02955951 0.97957456 0.99998174 0.000927 0.10569971 0.98202115 0.99998197

16 23 40 5 6 10 0.003775 0.02555826 0.96167545 0.99978280 0.000506 0.12043086 0.98454274 0.99998493

17 6 11 4 3 7 0.000000 0.55371094 0.99753011 0.99999796 0.000336 0.62939453 0.99760764 0.99999796

18 4 6 4 3 5 0.000000 0.59375000 0.99581400 0.99999597 0.000000 0.64062500 0.99605700 0.99999600

19 9 17 4 4 8 0.000269 0.36923218 0.99458268 0.99999496 0.000000 0.47051239 0.99482186 0.99999498

20 16 30 5 5 9 0.002691 0.14746502 0.99081730 0.99999189 0.001519 0.27150461 0.99154743 0.99999195

21 18 37 5 5 11 0.002053 0.16092585 0.99022499 0.99999092 0.000337 0.25048232 0.99066939 0.99999096

22 7 14 5 4 8 0.001577 0.55395508 0.99764972 0.99999797 0.000501 0.62353516 0.99768485 0.99999797

23 9 16 4 3 8 0.000250 0.31793213 0.99331619 0.99999393 0.003037 0.43721008 0.99385534 0.99999398

24 31 51 5 5 8 0.004045 0.00333280 0.96024725 0.99996437 0.003970 0.04349889 0.97436290 0.99997398

25 9 15 4 3 6 0.000757 0.25952148 0.99102678 0.99999189 0.000000 0.41384888 0.99297602 0.99999299

26 27 49 5 5 8 0.001722 0.01736987 0.96797843 0.99987974 0.000333 0.09222602 0.98204488 0.99998198

28 27 47 5 6 9 0.006189 0.01239560 0.97220986 0.99997466 0.000000 0.07123664 0.97908383 0.99997897

29 34 71 6 7 15 0.046117 0.02852902 0.98122226 0.99998281 0.019774 0.07020389 0.98231394 0.99998291

30 12 23 4 5 10 0.002861 0.24995208 0.99155426 0.99999195 0.000594 0.34471893 0.99195646 0.99999199

31 21 37 5 5 8 0.000335 0.03919450 0.97994898 0.99998177 0.000334 0.14345905 0.98499664 0.99998498

32 19 33 5 5 10 0.003519 0.04548891 0.96999886 0.99988083 0.000334 0.15963011 0.98581925 0.99998596

33 29 60 6 8 13 0.044070 0.04883569 0.98456505 0.99998585 0.005141 0.10738096 0.98535319 0.99998592

34 36 70 6 7 12 0.049390 0.01668428 0.97998377 0.99998179 0.002529 0.05712185 0.98122264 0.99998190

35 14 25 5 5 9 0.002144 0.15695018 0.98911478 0.99998990 0.000334 0.28797701 0.99087288 0.99999098

36 29 56 5 6 10 0.007635 0.02254811 0.97219655 0.99988380 0.001594 0.08928589 0.98340645 0.99998392

37 20 38 5 5 9 0.004598 0.07215021 0.98532712 0.99998682 0.003260 0.18448659 0.98851388 0.99998894

38 31 64 5 6 9 0.002900 0.03717040 0.98529150 0.99998684 0.001087 0.11263403 0.98646343 0.99998694

39 61 124 9 10 18 1.551559 0.00116882 0.95569496 0.99986768 0.047763 0.00951425 0.96999788 0.99997085

40 23 43 4 4 9 0.003473 0.03814892 0.98081026 0.99998276 0.000774 0.12076441 0.98385333 0.99998396

41 18 32 4 4 8 0.003706 0.05750333 0.96609719 0.99978686 0.000333 0.19745638 0.98784986 0.99998797

42 36 68 5 5 14 0.006670 0.00381684 0.81463673 0.98037497 0.007386 0.02868238 0.97142746 0.99997098

43 31 58 5 7 11 0.027855 0.01692225 0.97759178 0.99997973 0.003529 0.06477194 0.98050149 0.99998092

44 78 150 7 10 17 0.459141 0.00003289 0.93844113 0.99994142 0.076132 0.00077407 0.94594519 0.99994492

45 55 102 6 9 11 0.101259 0.00035646 0.94503474 0.99985754 0.002354 0.00611823 0.95975279 0.99995896

46 60 116 6 7 16 0.081021 0.00023098 0.92515124 0.99965566 0.026080 0.00335799 0.95504980 0.99995397

47 48 86 7 8 12 0.075847 0.00080723 0.95996061 0.99996351 0.001003 0.01131853 0.96602777 0.99996592

48 52 97 8 10 18 0.528176 0.00066992 0.93887114 0.99975969 0.100093 0.00760182 0.96237592 0.99996194

49 60 111 6 8 13 0.130469 0.00014183 0.93194376 0.99975358 0.008036 0.00387670 0.95751108 0.99995693

50 36 74 6 7 14 0.072151 0.02141654 0.97943954 0.99998083 0.006922 0.05905184 0.98061142 0.99998094

51 58 123 7 8 18 0.167014 0.00129092 0.96131942 0.99996365 0.095085 0.00715189 0.96402050 0.99996392

52 77 146 8 10 20 2.546974 0.00002134 0.76559700 0.97996221 0.214653 0.00090534 0.94845804 0.99994788

53 73 122 6 7 13 0.121916 0.00000214 0.89256304 0.99962324 0.009748 0.00057446 0.93907596 0.99993696

55 208 390 12 14 31 649.388035 0.00000000 0.66512161 0.97965552 313.083091 0.00000001 0.86434283 0.99985575

56 184 364 10 14 28 93.468759 0.00000000 0.85395647 0.99967281 97.081757 0.00000011 0.88667166 0.99988172

58 406 785 10 15 24 293.777338 0.00000000 0.56241914 0.98813658 12.744727 0.00000000 0.74302255 0.99970647
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