
13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

Importance of Graph Topology Properties on SAT Solver Efficiency

Kyle Shepherd
PhD Student, Dept. of Civil Engineering, Rice University, Houston, United States

ABSTRACT: This report investigates how graph topological properties affect the performance of #SAT
solvers. A general framework for representing #SAT problems as graphs while retaining information
about the polarity of the variables is presented. From this representation, a selection of topological
properties were extracted from a set of 2100 cubic graphs representing a vertex cover problem.
Statistical summary features were computed from these properties and used to train a logistic regression
model to predict whether classical #SAT solvers or newer TensorOrder #SAT solvers should be used.
When compared to a model that just uses the number of nodes as the input feature, a model using
topological properties selectes the wrong model 20% less often. It was determined that graphs with
stable clusters as determined by the Markov Cluster Algorithm (MCL), graphs with small rings, and
graphs with tree-like structure as measured by steady state diffusion, are determined to be most suitible
for the TensorOrder #SAT solver.

1. INTRODUCTION
1.1. Objectives
The objective of this work is to investigate the
graph topological properties that influence the per-
formance of solvers that solve the #SAT problem,
also known as the model counting problem. These
topological properties will be used to build a sim-
ple model selection algorithm to evaluate the most
important graph properties for model selection.

1.2. Justification
The model counting problem falls into the category
of #P-Complete. Which means problems in gen-
eral cannot be solved faster than exponential time.
However, efficient #SAT solvers exist in practice
because many classes of problems can be solved
faster than exponential time. When these solvers
are considered in aggregate and the fastest solver
is used for each case, they are known as the Vir-
tual Best Solver (VBS). The drawback is that it is
difficult to know which solver will be fastest on a
particular problem a priori.

We know that some solvers use the DPLL al-
gorithm, which is a recursive decomposition algo-
rithm. The efficiency of this algorithm is highly
dependent on the structure of the problem. Other

solvers have their complexity parameterized by the
treewidth of the SAT problem. This dependence on
structure implies that SAT problems can be repre-
sented by graphs, and implies that the properties of
this graph representation can affect the efficiency of
these solvers.

1.3. Background
SAT problems have been represented as graphs in
the past. These are known as Factor Graphs, or
Variable-Clause Graphs. This is a bipartite graph
where one set of nodes are the clauses, one set
of nodes are the variables, and the edges indicate
which variables are in which clauses. However,
when these graphs are drawn, dotted lines are used
for negative literals and solid lines are for positive
literals. This means the polarity of the variables
does not affect the topology of factor graphs. How-
ever, we know that the polarity of variables can af-
fect the performance of #SAT solvers, so this infor-
mation must be recorded in the graph.

The performance of #SAT solvers on a bench-
mark collection of 1091 weighted model counting
problems plus 2100 cubic vertex cover problems
has been collected by Dudek et al. (2019). From

1

13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

Figure 1: Generalized Factor Graph: The factor graph
representation of the Φ SAT problem. The expansion to
a generalized factor graph is shown, and the simplifica-
tion removing all degree 1 and 2 nodes is shown

this data, we know which solvers performed best
on each problem. From this data, a model selection
algorithm can be trained to measure features of the
#SAT problem and then select the best #SAT solver
to use. While prior work has been done on model
selection by Nudelman et al. (2004), they used only
basic features of the graph (degree distribution and
one type of clustering), and used graph representa-
tions that did not capture the variable polarity.

1.4. Guidance to the Reader
The first step is to represent the #SAT benchmark
problems as graphs. I will generalize the concept of
Factor Graphs by adding virtual variables and vir-
tual nodes. Each positive and negative literal will
be represented by separate variables. For example,
¬x and x becomes x1 and x2. These new variables
will be connected by a new clause that enforces the
fact that new variables must take different values.

The next step is to simplify the graphs. #SAT
solvers can solve clauses with 1 or 2 variables in
linear time, so I will iteratively remove all 1 de-
gree nodes from the graph, and replace all 2 de-
gree nodes with 1 spanning edge. This will leave

a “core” network with nodes of degree 3 or higher.
This kind of preprocessing is done for #SAT solver
competitions. In combination with the previous
step, this means each variable node in the original
Factor Graph is split into two nodes connected by
an edge, to represent the effect of positive and neg-
ative literals.

With the constructed graphs, a battery of graph
topological properties will be extracted. For this
report, only the features for the cubic graphs will
be extracted and analyzed. The larger graphs in
the weighted model counting caused some scal-
ing problems with the feature extraction algorithms.
Graph properties come in 3 varieties. Scalars such
as diameter or max degree, vectors such as, eigen-
values, Shortest Path Ring statistics (SP Ring), or
nodal betweenness, and matrices such as mean first
passage time or shortest path length.

The goal is to feed these properties as features
into a simple classification model to predict which
#SAT solver is the fastest on each #SAT prob-
lem. Specifically, this model will predict if clas-
sical solvers (cachet, miniC2D, and d4) are faster
than the TensorOrder solver by Dudek et al. (2019).
A logistic regression model will be used. Scalars
can be used directly in the classification model. For
vector and matrix values, statistical scalar measures
such as mean, median, variance, min, max, and en-
tropy will be used.

The accuracy of the models will be evaluated,
and the importance of the features will be investi-
gated.

2. RESULTS AND DISCUSSION

2.1. Feature Calculation
Table 1 displays the calculated properties and the
calculated features. SP Ring statistics uses an al-
gorithm from Franzblau (1991). It finds cycles in a
graph with no chords, no shortcuts from one end of
the cycle to the other. The Markov Cluster Algo-
rithm (MCL) was developed by van Dongen (2000)
and for this project I used the implementation by
GuyAllard (2018). It finds graph clusters by alter-
nating matrix multiplication (expansion) and matrix
normalization (inflation). By setting the expansion
coefficient to 3, and taking 20 evenly spaced sam-
ples of the inflation parameter from 1 to 6, the num-

2

13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

ber of clusters can be obtained, and their sensitiv-
ity to the inflation parameter can be obtained. The
Fiedler Vector Ratio is the ratio of positive values to
negative values in the Fiedler Vector, the eigenvec-
tor associated with the second smallest eigenvalue.
The Edge Cut of Spectral Clustering is the number
of edges connecting the two groups as defined by
the Fiedler Vector.

Steady State Diffusion is calculated by setting up
a diffusion problem on the graph. All nodes receive
a source of 1 substance, and a node i is designated
as the “sink” node. The steady state substance val-
ues of the nodes are calculated, and a matrix of
steady state values are obtained. In addition, the
maximum and minimum flow into the sink for each
node i is calculated, and the variance of the steady
state values for each node i is calculated.
SSDi, j = steady state substance value of node j if
node i is the sink
SSmaxi = maximum substance value of the
neighbors of node i
SSmini = minimum substance value of the
neighbors of node i
SSvari = variance of steady state substance values
if node i is the sink

2.2. Benchmark Data Curation
Some data curation was performed. Out of the
original 2100 benchmarks, only 1768 of the bench-
marks were solved by any #SAT solver. There-
fore, this analysis will only consider the solved
benchmarks. In addition, there was no attempt to
differentiate between the three different classical
solvers, the solve time of the TensorOrder method
was compared to the best classical solver. This
could hide some of the advantages of the Ten-
sorOrder method, if the classical methods cover for
each other’s weaknesses. However, in most cases
miniC2D was the superior solver so most compar-
isons were between TensorOrder and miniC2D.

Table 1: List of Computed Features

Topology Properties
Used

Summary Statistics
Used

of Nodes Mean

of Edges Geometric Mean
Shortest Path Harmonic Mean
Betweeness Median
Mean First Passage
Time

Lower 16th percentile

SP Ring Statistics Upper 16th percentile
Node Centered Ring
Statistics

Variance

Markov Cluster
Algorithm

Skewness

Eigenvalues Kurtosis
Fiedler Vector Ratio Minimim
Edge Cut of Spectral
Clustering

Maximum

Cosine Similarity Entropy
Pearson Similarity
Steady State Diffusion

2.3. Feature Average Comparison
The first step to take is to determine if the average of
any of the features is different between benchmarks
solved fastest by the classical methods, and solved
fasted by the tensor method. Table 2 shows the 8
most significant features.

It appears that Betweenness and Steady State
Diffusion features are different between these two
cases. The small values in the mean Pearson simi-
larity feature suggests floating point errors are the
cause of its apparent importance. Shortest path
and mean first passing time also appear on this list.
However, we know from Dudek et al. (2019) that
the tensor methods are faster for larger networks, so
the correlation with node count was checked. It ap-
pears that mean first passing time and Steady State
Diffusion variance are independent from the node
count and are possible candidates for the difference
between classical methods and tensor methods.

Table 2: Features with large differences between bench-
marks solved fast by classical methods, and solved fast
by tensor methods. The correlation with the node count
is shown.

Feature Classical Tensor Corr

skewness
MFPT

-0.033 -0.186 -0.04

3

13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

skewness
Between

-0.069 -0.308 -0.41

variance
Between

6875 28710 0.88

kurt
SSflow
Min

1.512 4.762 0.50

mean
PearSim

-4.505e-18 1.919e-18 0.28

kurt
Between

-0.255 0.066 0.30

kurt
Shortest
Path

-0.37 -0.031 0.96

variance
SSflow Var

1.473e-05 1.542e-06 -0.17

2.4. Control Logistic Regression Model
To measure the effect of these features in predict-
ing what #SAT solver to use, a logistic regression
model is trained. The model that is being fit is
shown below.

p(Tensor is faster) =
1

1+ e−(β0+β1∗x1+β2∗x2...)

First, a control model is trained using just the
node count as a predictor for which #SAT solver to
use. Table 3 shows the resulting parameters of this
model. Overall, it has a low error rate, only predict-
ing 7.35% of the benchmarks wrong. Generally, the
model has higher confidence when predicting that
the tensor method will be faster than the classical
methods.

Table 3: Logistic regression model results (node feature
only).

Parameter Value

β0 1.731
β1 5.077
Wrong Prediction Rate 0.0735
Average confidence
when predicting
classical is faster

0.86

Average confidence
when predicting tensor
is faster

0.91

2.5. Full Logistic Regression Model
Next, a model will be trained using all of the fea-
tures that were calculated. To ensure the features
are equally considered, the features are standard-
ized by subtracting by the mean and dividing by
the standard deviation. Table 4 shows the resulting
parameters of this full model. With all of the fea-
tures, the model is more accurate, only making the
wrong #SAT solver recommendation 5.825% of the
time. In addition, when this model is providing its
predictions, it is more confident in its results.

The features with the most influence include the
upper 16th percentile SP Ring statistics, entropy of
SP ring statistics, upper 16th percentile steady state
diffusion values, lower 16th percentile MCL group
count, and skewness of steady state diffusion value.

4

13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

Table 4: Logistic regression model results (Fully Fea-
tured).

Parameter Value

maximum magnitude β 1.277
Wrong Prediction Rate 0.05825
Average confidence
when predicting
classical is faster

0.90

Average confidence
when predicting tensor
is faster

0.93

2.6. Principal Component Logistic Regression
Model

However, the coefficients of the logistic fit can be
sensitive to variables that are correlated with each
other. Therefore, to remove this correlation effect,
a logistic regression model will be fit using prin-
cipal components. The 10 most significant prin-
cipal components were extracted from the normal-
ized features, and then used to train the model.

Table 5 shows the resulting parameters of the
model. While this model performs slightly worse
than the fully featured model, this model can be
used to extract the importance of each variable.

Table 5: Logistic regression model results (Principal
Components).

Parameter Value

maximum magnitude β -0.656
Wrong Prediction Rate 0.0690
Average confidence
when predicting
classical is faster

0.88

Average confidence
when predicting tensor
is faster

0.92

The principal component with the largest influ-
ence in the model is the 1st component, and it ex-
plains 55% of the feature variance. The coefficients
of this principal component can be inspected, and

compared to the coefficient of the node count fea-
ture. Inspecting the coefficients of the 1st princi-
pal component vector, it seems in general the mean
values of the features have the highest prominence,
and have the same magnitude as the node count
feature. Therefore, as the features increase along
the direction of this principal component, the node
count increases along with the means of the fea-
tures. It seems this component captures the varia-
tion of solver speed with node count.

The principal component with the second largest
influence in the model is the 8th component, and
it explains 1.4% of the data variance. The node
count of this component has much less influence,
so values in this principal component can increase
without also increasing the node count. Influential
features appear to be minimum of ring statistics,
variance of steady state diffusion variance, kurtosis
of node centered SP Ring statistics, entropy of ring
statistics, skewness of node centered SP Ring statis-
tics, skewness of steady state diffusion maximums,
kurtosis of steady state diffusion maximums, and
variance of SP Ring statistics.

2.7. Feature Importance
One final check that can be performed is to sum
up the influence of each feature across the model
and the principal components, and then control for
correlation with the node count.

In f luence f eature = ∑components(Model Weight) ∗
(Principal Component Weight)
In f luenceNode Count Controlled =
In f luence f eature− In f luenceNode Count ∗
(slope of linear fit with the feature)

When this operation is performed, the following
features in Table 6 are identified as the most impor-
tant when controlled for node count. Features from
the MCL group count appear frequently as impor-
tant. The features from the steady state diffusion
also appear frequently. Ring statistics also appears.

5

13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

Table 6: Influential Features (controlled for node
count).

Parameter Influence

min MCL groups 0.132
harmonic mean MCL
groups

0.130

variance MCL groups -0.128
lower 16th percentile
MCL groups

0.126

min Ring Statistics -0.112
kurtosis steady state
diffusion minimum

0.112

Datarange MCL groups -0.107
kurtosis steady state
diffusion maximum

0.106

variance steady state
diffusion variance

-0.103

min steady state
diffusion maximum

0.085

3. CONCLUSION
3.1. Results Summary
Overall, the size of the #SAT problem is the most
important feature in deciding whether to use a clas-
sical #SAT solver or the TensorOrder #SAT solver.
A model decision algorithm just using node count
chooses the correct #SAT solver 93% percent of the
time.

From Table 6, some conclusions about the de-
sired properties for graphs being solved by the Ten-
sorOrder #SAT solver can be drawn. The graph
needs a high minimum and average of clusters
found by the MCL method, but the negative coeffi-
cient on the MCL data range implies that the num-
ber of groups found by MCL as the inflation pa-
rameter varies cannot vary too much. These results
suggests that graphs need a large number of stable,
tight clusters to be easily solved by the TensorOrder
method.

In addition, the graph needs a high kurtosis for
the minimum and maximum values of neighbor
nodes found by the steady state diffusion method.
This means when a node is a sink, it receives the
majority of its flow from one neighbor. Examples

Figure 2: Steady State Flow Minimum Typical Dis-
tribution: 11 samples of 200 node graphs and their
Steady State Flow Minimum are displayed. This dis-
tribution has a peak, its average, towards the right.
There is also a bubble of activity in the middle and left,
leading to heavy tail behavior.

6

13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

of this property distribution are seen in Figure 2.
When the kurtosis is high, it implies that the small
density lump seen on the left is larger than normal,
a heavier tailed distribution. Graphs solved faster
by TensorOrder have heavier tails, more nodes get-
ting most of its flow from one neighbor.

A node getting most of its flow from one neigh-
bor implies some sort of topologic bottleneck be-
tween that node and the other nodes. This is similar
to nodes on a tree, where there are very few paths to
other nodes. Therefore, this property implies a tree
like structure in the graph, which implies a small
treewidth of the graph, enabling faster computation
by the TensorOrder method which is bounded by
the treewidth.

A low variance of steady state diffusion variance
is desired for the TensorOrder #SAT solver. The
steady state diffusion variance is the variance in the
steady substance values for a given sink node. If
this variance measure does not change if the sink
node changes, that implies that each node is equally
impactful on the network. This implies each node
has a similar neighborhood, implying the presence
of clusters.

Finally, the minimum value obtained by the ring
statistics should be small for the TensorOrder #SAT
solver. This implies that the graph should have tri-
angles and squares, small cycles.

3.2. Future Work
This work can be expanded upon in multiple direc-
tions. Immediately, the weighted model counting
benchmark cases can have their features measured.
However, due to their size some of the topology
properties cannot be extracted efficiently. The SP
Rings algorithm and the mean first passage time al-
gorithm do not scale well, and will likely have to be
heavily modified, (such as capping the size of mea-
sured SP rings) or removed from the list of consid-
ered properties. The preliminary results from these
cubic graphs suggests that these two properties are
not crucial for predicting #SAT solver performance
because they correlate with the size of the problem.
Therefore, not too much information is lost by re-
moving these features.

This work can be verified by producing artifi-
cial graphs that correspond to the proposed Ten-

sorOrder friendly properties discussed in the results
summary, such as clusterability. Predictions for the
best solver can be calculated ahead of time on the
generated tests, and these predictions can be tested
by measuring the running time of classical #SAT
solvers and the TensorOrder #SAT solver.

In addition, more summary statistics can be ex-
tracted from the topology properties. The original
plan in this report was to calculate features that rely
on the probability mass distribution (PDF) of the
values. These features included entropy and param-
eters of best fit distributions. However, developing
general purpose code to fit distributions to arbitrary
data was outside the scope of this report.

Some work has been performed on creating a
smooth PDF of the data distribution, so proper-
ties such as entropy can be measured and so the
tails of the distribution can be modeled. A smooth
PDF also allows for better normalization of the data
so the fitting models can be more accurate. One
method includes fitting M-Splines and I-Splines to
the data, and another method involves fitting piece-
wise monotonic functions (such as generalized lo-
gistic functions and monotonic cubic functions) to
the data. However, as with the distribution fitting
code, developing general purpose code to create
smooth PDFs was outside the scope of this report.

The unusual distribution seen in the steady state
distribution minimum flow needs to be investigated.
The lumpy nature of the distribution implies a dis-
crete set of network geometries, such as bottle-
necks, that could be characterized and then mea-
sured. Overall, the underlying structures giving rise
to the values calculated in the steady state diffusion
method, and in other methods, needs to be investi-
gated, so the behavior of different #SAT solvers can
be analyzed.

4. REFERENCES
Dudek, J. M., Dueñas-Osorio, L., and Vardi, M. Y.

(2019). “Efficient contraction of large tensor net-
works for weighted model counting through graph de-
compositions.

Franzblau, D. S. (1991). “Computation of ring statistics
for network models of solids.” Phys. Rev. B, 44, 4925–
4930.

7

13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

GuyAllard (2018). “Markov clustering in python,
<https://github.com/GuyAllard/markov_clustering>.

Nudelman, E., Leyton-Brown, K., Hoos, H. H., Devkar,
A., and Shoham, Y. (2004). “Understanding random
sat: Beyond the clauses-to-variables ratio.” Principles
and Practice of Constraint Programming – CP 2004,
M. Wallace, ed., Berlin, Heidelberg, Springer Berlin
Heidelberg, 438–452.

van Dongen, S. (2000). “Graph clustering by flow sim-
ulation.” Ph.D. thesis, University of Utrecht, hello
world, <https://micans.org/mcl/index.html>.

8

	Introduction
	Objectives
	Justification
	Background
	Guidance to the Reader

	Results and Discussion
	Feature Calculation
	Benchmark Data Curation
	Feature Average Comparison
	Control Logistic Regression Model
	Full Logistic Regression Model
	Principal Component Logistic Regression Model
	Feature Importance

	Conclusion
	Results Summary
	Future Work

	REFERENCES

